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Abstract 

Two natural optical geometries on the space 79 of all null directions over a four-dimensional 
Lorentzian manifold A// are defined and studied. One of this geometries is never integrable and 
the other is integrable iff the metric of M is conformally fiat. Sections of 79 forming a zero set of 
integrability conditions for the latter optical geometry are interpreted as principal null directions on 
M .  

Certain well-defined conditions on /2  are shown to be equivalent to the vanishing of the traceless 
part of the Ricci tensor of A4. Sections of 79 forming a zero set for these new conditions correspond 
to the eigendirections of the Ricci tensor of .A,4. 

An analogy between optical and Hermitian geometries is discussed. Existing (or possible to 
exist) mutual counterparts between facts from optical and Hermitian geometries are listed. In this 
analogy, construction of the optical geometries on 79 constitutes a Lorentzian counterpart of the 
Atiyah-Hitchin-Singer construction of two natural almost Hermitian structures on the twistor space 
of four-dimensional Euclidean manifold. 
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1. Introduct ion 

In 1922, Cartan [4] observed that in any conformal ly  nonflat  Lorentzian 4-mani fo ld  there 

exists at most  four  preferred by geometry null  directions.  Any such direction is now called 

a principal  null  direction and is generated by a nonvanish ing  vector field k u satisfying 

k[~C#lvpl~rk~lkVk p = 0, I 1) 
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where C ~ w  is the Weyl tensor. Cartan's observation was then independently noted by a 
number of authors. In particular, Penrose [22] found principal null directions reformulating 

General Relativity in terms of spinors. 
An efficient method of finding principal null directions on a four-dimensional manifold .A4 

equipped with a Lorentzian conformally nonflat metric g uses Newman-Penrose formalism. 
This associates a null tetrad (k, l, m, rh) with g in such a way that ~4 ~ 0, where ~ (i = 0, 

1, 2, 3, 4) denote Weyl scalars. A principal null direction is then generated by a null vector 

field 

k(z) = k + zEl + ~m + zrh, (2) 

with a complex function z on A/[ being any solution to the equation 

~0(z) -- k°0 + 4zt/tl + 6z2k°2 -k- 4z3~3 + Z4tff4 = 0. (3) 

Since Cartan's discovery there was a growing interest in studying null objects. The 

simplest of them, a null congruence in an oriented space-time, defines quite a rich 
structure - 'optical geometry' of Trautman [36]. This notion, defined previously only in 
four-dimensions, is now generalized to even-dimensional Lorentzian manifolds of higher 

dimension [ 12]. Higher-dimensional optical geometries appear naturally in the twistor the- 

ory. One finds [37] that there is a precise way of defining two optical geometries O+ on 
Penrose's [23] six-dimensional space of all null directions over four-dimensional Lorentzian 

manifold. These optical geometries are studied in this paper (Sections 2, 4 and 5). Their 
integrability properties correspond to certain properties of the metric of space-time. Our 

studies of O+ form an optical geometric reformulation of facts on natural objects on space 

of null directions known to Penrose [24] (see also a note about this in Refs. [18,34]). 
Studying integrability conditions of O+ we find, in Section 5, that slightly modified 

conditions encode the traceless part of the Einstein equations for the space-time. These 

new conditions are interpreted geometrically in terms of a l-parameter family of five- 
dimensional CR-structures that can be identified with the space of null directions. 

Section 6 presents a way of understanding optical geometries as objects that are analogous 

to almost Hermitian structures. We develop Trautman's proposal [38] of inspecting known 

facts in both Hermitian and optical sectors, and finding their mutual counterparts from the 
point of view of this analogy. Finally, we present a few open problems related to Trautman's 
proposal. 

We use the following notations and conventions. If A//denotes a manifold then T.A4 (re- 
spectively, T ' M )  denotes its tangent (respectively, cotangent) bundle; Tx.A4 (respectively, 
Tx*.A4) denotes tangent (respectively, cotangent) space at x ~ A/[. If/C, £ denote vector 
bundles over.A4, then F(/C) denotes the set of all sections of/C, and [F(/C), F (£ ) ]  denotes 
a set consisting of all commutators of the form [k, l], where k, l are sections of/C, 12, 
respectively. 

If q~ : .A4 --+ A/g is a diffeomorphism between two manifolds A// and .A4 I, then q~. 
denotes the transport of contravariant tensor fields from .A4 to .A4'. Transport of covariant 
tensor fields from A.4' to A4 is denoted by 4~*. Transport of tensor fields of general type is 
denoted by ~. 
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A metric with signature ( ÷  + . . .  + )  (respectively ( +  + . - .  + - ) )  is called Euclidean 

(respectively, Lorentzian). In the Lorentzian case we apply Newman-Penrose  formalism as 

presented in Ref. [1 1, pp. 82-87].  l Note that Eqs. (2) and (3) are in agreement with this 

convention. 

2. Natural optical geometries on twistor bundle 

Let AA be a four-dimensional oriented manifold equipped with a Lorentzian metric g. 

Consider set Sx of all null directions outgoing from a given point x E A4. This set is 

topologically a sphere - celestial sphere of  an observer situated at x. The points of this 

sphere can be parametrized by a complex number z belonging to the Argand plane C t3 { ~  }. 

A direction associated with z -¢ ~ is generated by a vector k(z) of (2); with z = ~ we 

associate a direction generated by vector 1. Conversely, any null direction from x is either 

parallel to vector / or can be represented by only one such null vector k(z) that g(k(z), !) = 

- 1 .  It follows that such k(z) has necessarily form (2), and defines certain z E C. If a 

direction is parallel to l we associate with it z = cx~. 

We define a fiber bundle 79 = U x ~ S x  over AA, so that two-dimensional spheres S ,  

are its fibers. Canonical projection re : 79 --~ .AA is defined by re(Sx) = x. Note that any 

complex function z = z(x) on .A4 defines, via our parametrization of  Sx by a point of the 

Argand plane, a section z : .A4 9 x w-~ (x, z(x)) ~ 79 of bundle 79. It corresponds to certain 

field of  null directions. From now on we identify sections of  bundle 79 with fields of  null 

directions on M .  I will call bundle 79 as "Penrose 's  twistor space", or ' twistor bundle ' .  

It can naturally be endowed with a structure of  optical geometry of Trautman [36]. Such 

geometry is defined on any 2m-dimensional  (m > 2) manifold Pc' equipped with Lorentzian 

metric g by: 

(1) choosing a null congruence on P(, which defines a vector bundle/C over 2( with null 

fibers of dimension 1, 

(2) defining an almost complex structure J in the vector bundle 7-¢ --  /C±//C in such a 

way, that ,.7 is orthogonal with respect to the metric g '  induced in ~ by g. 

We endow 79 with optical geometry in four steps [37]. They use the Levi-Civi ta  connec- 

tion associated with g on A,4 to define objects on 79. 

Step 1: Horizontal space in 7 9. 

Consider a vector w at a point x E .A//. Let y ( t ) ,  such that y(0)  = x, be any tangent 

curve to w. Let p E 79 be a point from a fiber over x (i.e. re(p) = x). A horizontal lift of w 

to a vector t~ at p is defined as follows. 

By definition point p describes a null direction outgoing from x. We now use a parallel 

propagator associated with the Levi-Civi ta  connection o f g  to transport this direction from x 

along y (t). In this way we obtain 1-parameter family of  directions p(t). Due to the properties 

of the parallel transport these new directions are null. Hence p(t) can be interpreted as a 

1A Euclidean analog of this formalism is presented in [201. 
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curve in 79 such that p(0)  = p.  A horizontal lift of w is such a vector tb among vectors 

tangent at p to this curve that zr.(t~) = w. It turns out that definition of  t~ does not depend 

on the choice of  the tangent curve y ( t )  at x. It follows that horizontal lifts of linearly 

independent vectors at x are linearly independent at p.  Hence the whole TxAd at x can be 

lifted to some four-dimensional vector space lip at p. Hp is called a horizontal space at 

p c 79, and its two-dimensional complement  Vp to Tp79 is called a vertical space. It follows 

that Vp is also tangent to the fiber Sx at the point p. In this way for any point p 6 79 we 

have a natural splitting of its tangent space into direct sum Tp79 = Vp (~ lip. Moreover, 

Vp is identical with a tangent space to a certain point on two-dimensional sphere. 

Step 2: Lorentzian metric on 79. 

A Lorentzian metric ~ can be defined on 79 by the requirements that: 

(i) a scalar product of  any two horizontal vectors in ~ is the same as the scalar product in 

g of  their push forwards to .M, 

(ii) a scalar product of  any two vertical vectors in ~ is equal to their scalar product in a 

natural metric on two-dimensional sphere (this is consistent since vertical vectors can 

be considered tangent vectors to $2), 

any two vectors such that one is horizontal and the other is vertical are orthogonal 

in ~. 

If  wi (i = 1, 2) are two vectors at a point p E 7 9, vi, hi denote their vertical and horizontal 

components,  respectively and Z' denotes a natural metric on S 2, then definition of ~ can be 

written more precisely as 

(iii) 

g(//)l, W2) = g (n ' , (h l ) ,  Jr,(h2)) q'- ~v'(Vl, I)2). 

Step 3: Null spray on 79. 

A natural congruence on 79 is related to the horizontal lifts of  null directions from .M. It 

is defined by the following recipe. Take a null vector k at x E .M. This represents certain 

null direction p(k) outgoing from x. Correspondingly, this defines a point p = p(k) in the 

fiber z - I  (x). Lift k horizontally to p. This defines k which generates a certain direction 

outgoing from p ~ 79. Repeating this procedure for all directions outgoing from x e 3.4 

we attach to any point of  zr -1 (x) a unique direction. If  we do it for all points of  .M, we 

define a field of  directions on 79 which, according to its construction and properties of  ~,, is 

null. Integral curves of  this field form a null congruence required in point (1) of  definition 

of  optical geometry. This congruence is called null spray on 79 [34]. 

Step 4: Almost  complex structure in screen space. 

In any point p E 7 9 tangent vectors to the null spray span one-dimensional vector space 

Kp, which is null with respect to ~. In this way null spray defines a vector bundle K; --  

[,-Jpe7, Kp with null fibers of  dimension 1. A bundle orthogonal to it in ~ is denoted by/C ±. 

This is of  fiber dimension 5, and has K~ as its subbundle. A quotient bundle 7-[ = / C ± / / C  has 

fibers of  dimension 4 and is called a screen space for the null spray. Since ~ is degenerate 

on K; then it descends to a Euclidean metric ~'  in ~ .  To complete the definition of  optical 
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geometry on 79 we need to define such an almost complex structure J in 7-(, that it is 

orthogonal with respect to ~ .  

Let k denotes a null vector at x E A4. Consider a subspace k ± of TxA/[ which in g is 

orthogonal to k. A space Rk spanned in Tx.A4 by k is its subspace. Hence we can define vector 

space X = k±/Rk.  This two-dimensional space is naturally endowed with an orientation 

induced from that of .A4 and with the metric g' induced by g. An orientation-clockwise 

rotation of  any vector from X to a vector orthogonal to it defines a complex structure jx in 

X. Horizontal lifts of X and jx to the point p = p(k) ~ 79 are defined as follows. Denote 

and ~ k  and Rk lifted horizontally to the point p. A horizontal respectively by k ± _ spaces k ± 

lift )~p of X is )~p = k±/Nk. Spaces X and ~p are naturally isomorphic, and one can use 

jx and this isomorphism to define a complex structure jp in )~p. Since I1~k is precisely a 

± of/C ±, then we see direction of null spray at p, and since k ± is a subspace of  the fiber Kp 
that )~p is a subspace of  a fiber lip of bundle ~ .  To identify the complement of  )~p in Hp we 

note, that Vp is always orthogonal to null spray and, being vertical, does not contain Kp. 
Therefore it descends to a two-dimensional subspace (also denoted by Vp) in the fiber H r, 

of the quotient bundle 7-/. Now, it is easy to see that so defined Vp is a complement of )(t, 
in Hp. Moreover, these two spaces are orthogonal in the metric ~'. Remembering that V t, 

can be identified with the tangent space of  the two-dimensional sphere, we endow it with 

the complex structure ip, that comes from the natural complex structure on S 2. In this way, 

we arrived at the split Hp = Vp ~ f(p and we have well-defined complex structures jp in 

)~p and ip in Vp. This gives two possibilities of  defining complex structures in Hp. These 

are J+p = ip q- jp  and J_p  = ip -- jp ,  where addition is understood as a direct sum. This, 

point by point, defines two almost complex structures 3"+ and ,7_ in the bundle ~ .  It is 

easy to check that both structures are orthogonal with resl~ect to the metric ~,'. 

Summing up, we defined two natural structures O+ = (/C, ~, ,7+)and (.9_ = (/C, g, ,-7-) 
of optical geometries on 79. One can view them as the following sequence: 

/C ~ /C ± - - +  7~ = /C~//C 

fiber dimension 1 5 4 

of real vector bundles, and differ them stating which of  two natural orthogonal almost 

complex structures 3"+ or 3"_ is given in ~ .  

3. Optical geometries and CR-structures. General theory 

We ended the last section with two natural optical geometries O+ on 7 9. Although they 

differ only by an almost complex structure in the bundle 7-/, their properties are totally 
different. To see this difference we return to the general case of 2m-dimensional manifold 
Pc" with Lorentzian metric g. An optical geometry (.9 on it is defined by: 

(1) the following sequence 

1C ~ £=1C ± > ~ = £, /1C 
fiber dimension 1 2m - 1 2m - 2 
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of real vector bundles among which/C is a null subbundle of  TX,  and 
(2) an almost complex structure ,.7 in 7-[ which is orthogonal with respect to the metric g' 

induced by g in 7-(. 
Suppose now that we have an optical geometry O that satisfies the following conditions: 

(a) [f '(/C), f '(/C)] c F ( E ) ,  

(b) [/-'(]C), /"(/2)] C r ( /~) ,  
(c) tf0k is a f low generated by any section k o f  lC then Ok`7 = `7. 

Condition (a) is always satisfied. It says that F(/C) defines a foliation of X by one- 
dimensional manifolds - integral curves of  any nonvanishing section k • F(/C). These form 

a null congruence on X. Condition (b) says that any line of  this congruence is geodesic in 
the metric g. Any point x • X belongs to precisely one line of  the congruence. We define 

an equivalence relation " ~ "  on X identifying points on the same line. More precisely, any 

two points x, x '  • X are in the relation " ~ "  i f f x '  = 0k(x). 
We assume that in a considered region/d of X a quotient space Q ~ / d / ~  is a (2m - 1)- 

dimensional manifold. This quotient manifold has some additional structure. Le t / 7  denote 
the canonical projection /7 : /d ~ b// ,-- .  If  (a)-(c) holds then this projection defines 

7-/' ~ / 7 , ~  and `7'  ~ /7`7. One checks that ~ '  is a subbundle of  T Q  with fibers of  

dimension 2(m - 1) and `7' is an almost complex structure in 7-/'. Now, let X' ,  Y' be any 
two real sections of  the bundle 7-/'. Note that X' ,  Y' are now vector fields on Q. Extending 

`7'  to C ® 7-( by linearity one can ask when 
(d) `7' [X' + i `7 'X' ,  Y' + i f f 'Y ' ]  = - i  [X'  + i`7 'X' ,  Y' + i`7'Y']. 

This condition generalizes classical Newlander-Nirenberg integrability conditions [19] 

of  an almost complex structure, in the sense that if 7-/' defines a foliation of Q by (2m - 2)- 
dimensional manifolds then `7' restricted to these manifolds and satisfying (d) is a complex 
structure there. 

We say that an optical geometry O is integrable if and only if it satisfies the above 

conditions (a)-(d). For obvious reasons, optical geometry satisfying only conditions (a)-(b) 
is called geodesic. 

There is a relation between integrable optical geometries and CR-structures. 
A Cauchy-Riemann (CR) structure is a real (2m - 1)-dimensional manifold Q together 

with: 
(1) a real subbundle 7-/' C T Q of fibers of  dimension 2(m - 1), 
(2) an almost complex structure ,7' in 7-(. 

If  in addition CR-structure satisfies integrability condition (d) then it is called an integrable 
CR-structure. Equivalently, CR-structure may be also defined on Q by 2m complex valued 
1-forms E i (i = 1,2 ..... 2m), and one real valued 1-form A such that 

A A El A E2 A . . .  A E2m A J~l A J~2 A . . .  A /~2m ~;6 0. (4) 

Then 7-/' is a vector bundle whose all sections are complex valued vector fields on Q that 
annihilate A and all Ei 'S. So defined 7-/' is naturally endowed with an almost complex 
structure. Note that forms 

A ' = f A  and E ~ = p / E j ,  (5) 
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with real function f # 0 and complex functions p/J, Pl ~ 0 define the same 7-/t. Therefore 

forms (A,  Ei) and ( X ,  E~) define the same CR-structure. This shows why one also defines 

a CR-structure on Q in terms of  a class of 1-forms [(A, Ei)], i  = 1 ..... 2m given up to 
transformations ( A,  Ei ) ----> ( A ', E~ ). 

Two CR-structures (Q, 7-/, ,7) and (Qt, ~ t ,  ,Tt) are called (locally) equivalent iff there 
exists a (local) diffeomorphism q~ : Q ---> Qt such that 

<.b,7-/=7-/t and ~ J = J ' .  

There exist nonequivalent CR-structures on the same manifold Q. 

We have the following theorem. 

Theorem 3.1. 
(1) A real 2m-dimensional manifold P( equipped with an integrable optical geome t~  

is locally diffeomorphic to • x Q where Q is a (2m - 1)-dimensional integrable 
CR-structure. 

(2) Given a (2m - l )-dimensional integrable CR-structure Q one can define an integrable 
optical geometry on ~ x Q. 

Proof. Point (1) is obvious in view of  what we have said so far. The local factor R in 

x Q is associated with integral curves of  any nonvanishing section k of  35. We prove 

(2) by giving a construction of an integrable optical geometry. Let H denote the projection 

H : ~ x Q ~ Q. Denote by S a subbundle of  T* Q annihilating 7-/'. S has one-dimensional 

fibers, hence it is generated by a nonvanishing section, say ~'. We define a nonvanishing 

1-form k on ~ x Q by k = H* (~'). We define k as a nonvanishing vector field on ~ x Q 

which is tangent to the fibers 17-1(x) ,  x E Q. We define 35 as a bundle generated by 

k, and E ~ ker~.; both 35 and E are subbundles of  T(R × Q). Due to the construction 

I-I*(E/35) = 7-/'. Therefore we can define ,7 in 7-[ = £/35 by ,7([l]) = `7 ' (H ,  ([l])), where 

[l] ~ E/35. Let g '  be any Euclidean metric in 7-[' such that ,7 '  is orthogonal in it. We define 

a Lorentzian metric on R x Q by 

g = l-l*(g I) - 3.¢x, 

where ot is any l-form on ~ × Q such that the metric g is nondegenerate. One checks that 

(35, g, ,7) is an integrable optical geometry with g as a metric on ~ × Q. [] 

For m = 2 the above theorem was formulated in [29]. In somewhat different context it 
also appeared in [ 1 8,32,33,35]. 

Note that the metric g in the proof of  Theorem 3.1 is not uniquely defined. It follows from 
this proof that an optical geometry admits a whole class of  the so-called adapted metrics. A 
Lorentzian metric G on X' is said to be adapted to the optical geometry (35, g, ,7) if, relative 

to G: 
(I) 35 is null, 

(II) 35± is orthogonal to 35, 

(III) ,,7 is orthogonal with respect to metric G '  induced by G in 7-/. 
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We note that the case m ---- 2 is different from cases m > 2 in the following sense. 

If m = 2 and Pc' is oriented then any optical geometry can be defined by choosing a 

null congruence on X. All vector fields tangent to the congruence form the bundle/C and 

due to the dimension of  X, the bundle 7-/ = /C±//C has two-dimensional fibers. Then 

the orientation of  X and the metric gl in ~ uniquely define a complex structure 3" in 7-/. 

The integrability conditions (a)-(d) for so obtained optical geometry are equivalent to the 

geodesic and shear-free property of  the congruence [29,30]. If they are satisfied in one of 

the adapted metrics they are also valid in any other adapted metric. 

This is not in general true ifm > 2. In such cases a null congruence also defines/C and/C ± 

as before but, since the fiber dimension of 7-[ = / C± / / C  is greater than or equal to 4, there is 

no natural way of  defining , J  in ~ .  Therefore if m > 2 the choice of a null congruence does 

not suffice for a definition of  an optical geometry. Moreover, the integrability conditions 

(a)-(d) say nothing about the shear-free property of  the congruence generated by sections 

of the bundle/C. It may happen that in some adapted metrics the congruence has shear and 

in some others not [28]. 

4. Integrability conditions for (.9± on 79 

In Section 3 we mentioned that two natural optical geometries (-9+ and (-9_ on twistor 

bundle 79 are different. To be more precise we have the following theorem. 

Theorem 4.1. 

(1) Both optical geometries O+ are geodesic. 
(2) (-9_ is never integrable. 

(3) (-9+ is integrable if and only if the metric g on base manifold A4 is conformally 

flat. 

Sketch of the proof One checks integrability conditions (a)-(d) for optical geometries (,9+ 

by a straightforward calculation. Remarkably, one finds that in addition to a trivially satisfied 

condition (a) also condition (b) is satisfied automatically. Since these two conditions are 

independent of the choice of ,Y" in 7-[ then this proves point (1) of  the theorem. Note that 

this, in particular, means that the null spray on 79 is geodesic. This justifies a name 'null 

geodesic spray', that some people use instead of  null spray [34]. 
Inspecting condition (c) one finds the main difference between optical geometries O+ 

and O_.  It turns out that O_  never satisfies condition (c). This means that independently 
of  the properties of  the metric g on A4 geometry O_ is not integrable. On the other hand 

one finds that O+ satisfy condition (c) if and only if the metric g on .A4 is conformally flat. 

To be more specific, we parametrize any point p ~ 79 by (x, z), where x -- rr(p) and z is a 
number from the Argand plane as defined in Section 2. Then one finds that condition (c) is 
satisfied if and only if the following expression 

qJo(z) = ~0 + 4ZqJl + 6z2qJ2 + 4z3ff'3 + z41/'t4 
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vanishes for any z. This means that all Weyl scalars ~- (i = 0, 1,2, 3, 4) of the metric g 

vanish. Hence g must be conformally flat. 

Now, restricting ourselves to conformally fiat metrics on .A// we find quite unexpect- 
edly that condition (d) for O+ associated with such metrics is satisfied automatically. This 

completes the proof. £3 

It follows from the sketch of  the proof that the whole set of  integrability conditions (a)-(d) 

for the optical geometry O+ is equivalent to the only one identity q;0(z) = 0. One can also 

ask about those z's for which we have ~0(z) = 0. There are at most four such z's. These are 

precisely the same that via (2) correspond to principal null directions on .M. They define 

special sections z : J~A ~ x ~ (x, z (x) )  ~ 79 of the twistor bundle on which conditions 

(a)-(d) are satisfied. The set of  all such sections is called a set of  zeroes of  integrability 

conditions for (._9+. It consists of at most four elements. Due to our identification of  sections 

of  79 with fields of null directions on .M we have the following theorem. 

Theorem 4.2. Principal null directions on a four-dimensional Lorentzian manifold are 

identical with the set o f  zeroes o f  integrability conditions for  optical geometry 0+. 

This theorem can be considered a geometrical definition of principal null directions. 

5. Encoding traceless part of the Einstein equations on 79 

The following reformulation of  integrability conditions (a)-(d) for optical geometry 69_ 

is possible. 

Fix a metric g on the base manifold .M of 79. Let N be any nonvanishing vector field 

tangent to the null spray on 79. Let A be a real one form on 7 9 defined by A = ~(N).  It is 

specified up to a multiplication by a real function on 79 (A ~ A '  ~ 0 s.t. A '  A A = 0). With 

the horizontal space in 79 one associates another 1-form. This is such a complex 1-form E1 

on 7 9 that (i) it annihilates horizontal space and (ii) E1 A/~'1 # 0. This is also defined up to 

a multiplication by a complex function on 79 (El --+ E11 -¢ 0 s.t. U I A El = 0). It is easy 
to see that the metric ~ on 7 9 can be expressed as 

= 2(a2E1/~l + A S  + b2E2E2) 

with some nonvanishing functions a, b and some 1-forms S (real) and E2 (complex) on 7 9, 

The above expression can be considered a definition of the form E2. It is given up to such 
' that E~ A E2 A A = 0 and E~ A A 5~ 0. One can check that the transformations E2 ~ E 2 

following theorem is true. 

Theorem 5.1. Optical geometry O+ on 7 9 is integrable iff 

( £ N E I )  A El A E2 A A = 0. (6) 
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The proof of this theorem consists of simple calculations. Here we mention only that 
integrability condition (b) of O+ is equivalent to (ENA) A A ---- 0 and is, of course, 
satisfied trivially. We also know that the only condition to be satisfied is (c). One checks 

that it splits into automatically satisfied part 

(£NE2) A El A E2 A A = 0, (7) 

and condition (6), which is satisfied if and only if the metric g of the base manifold A//is 

conformally flat. 
The fact that integrability conditions for O+ imply conformal flatness of the base metric 

g is discouraging. One would rather like to have these kind of conditions to code Einstein 
equations for g. That this is not so hopeless shows the following theorem. 

Theorem 5.2. The following condition 

(/~NEI) A E1 A E2 A A = 0 (8) 

is equivalent to the Einstein equations 

Ruv = )~guv 

with cosmological constant X. 

(9) 

Our proof of this theorem is by direct calculations. We mention only that condition (8) 
is equivalent to condition 

~Poo(z) = ~Poo + 2 ~ o l  + 2Z~01 + 4Z~q~ll + ~'2qb02 4- Z2q~02 

-k- 2Z,2ZqDI2 + 2Z2Z, q312 -]- Z2Z.2~22 ~ 0, (10) 

which must be satisfied identically for all z's. Details are presented in [21]. 

Comparing conditions (6) and (8) one sees that they differ only by interchanging E2 and 
/~2. That this symmetry can be misleading follows from the fact, that one has to remember 
about condition (7), if one wants to interpret (8) as integrability conditions for some other 
optical geometry, say O'.  It is interesting to ask whether there exists some geometrical 

structure on 7 9 for which (8) can be interpreted as integrability condition. 
Theorems 5.1 and 5.2 can be also interpreted as follows. Suppose that S is any surface of 

dimension 5 in 79 that is transversal to the null geodesic spray N. Consider the restrictions 
A(S) ,  E1 (S), E2($) of forms A, El, E2 to S, respectively. These forms generate a CR- 
structure Q(S) on S. Let Q(S ~) be a transport of Q(S) along null geodesic spray from S to 
another transversal surface $~. A typical situation will be such that two CR-structures Q(S) 
and Q(S t) will be inequivalent. According to Theorems 5.1 and 5.2 the knowledge of a 
deformation of CR-structure Q(S) during its transport along N carries an information about 
properties of the metric g on the base AA of the twistor bundle. This, in particular, gives a 
possibility of constructing Lorentzian Einstein manifolds. One could first try to construct 
a six-dimensional real manifold via 1-parameter deformation (A(r), El(r),  E2(r)) of a 
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given five-dimensional CR-structure (A, El ,  E2). This deformation should be subject to 

the following equations: 

(£NA(r ) )  m A(r) = O, 

(£NE2(r)) A E2(r) m E l ( r )  A A(r) ---- 0, 

(£NEI(r) )  A /~2(r) A El ( r )  A A(r) ---- 0, 

(11) 

(12) 

(13) 

where N = O r.  Given such a deformation, one could try to identify it with a twistor space 

of some four-dimensional Lorentzian manifold. If  such procedure of  identification exists, it 

should then allow for reconstruction of the four-dimensional Lorentzian metric that satisfies 

Einstein equations. 

We close this section with the following remark. If one asks about sections of the twistor 

bundle on which condition (8) vanishes one finds that they correspond to the principal null di- 

rections of  the traceless Ricci tensor. (Note similarity between ~0(z) -- 0 and ~00 (z) = 0.) 

6. Optical  and Hermit ian  geometr ies  - an analogy 

There is a striking analogy between optical and Hermitian geometries [9,38]. To describe 

this we consider a general 2m-dimensional manifold X with Lorentzian or Euclidean metric 

g. In the complexification of TX,  equipped with the complexification of the real metric g, 

consider such a subbundle iV', that any of  its fibers is a totally null vector space of maximal 

dimension. It turns out that A/" A ~ = C ®/C where/C is a real bundle of fiber dimension 

0 or 1, depending on whether g is Euclidean or Lorentzian, respectively. Moreover, since 

.Af + . ~  = C ®/C ± then L~ = / C  -L is a subbundle of TX with fibers of  codimension 0 (in 

the Euclidean case) or 1 (in the Lorentzian case). In both cases we have a natural almost 

complex structure ,.7 in 7-( ~ E/IC. To define this we observe that any section l of £ is 

of the form I = n 4- h where n is some section of  A/'. If  [l] denotes an equivalence class 

associated with l in 7-( we define J by 

L X ( [ l ] ) = f f ( [ n + h ] ) ~ [ - i ( n - f i ) ] .  (14) 

One proves that ,7 is well defined and orthogonal with respect to the descended metric g '  

in ~ .  Therefore Af defines either almost Hermitian or optical geometry over X, depending 

on whether the signature of  g is Euclidean or Lorentzian, respectively. The converse is also 

true. Any orthogonal almost complex structure or optical geometry over X can be obtained 

in this manner. 
Thus we have an analogy between almost complex and almost optical geometries. Due 

to this, integrability conditions (a)-(d) for optical geometries and classical Newlander- 
Nirenberg integrability conditions for Hermitian geometries have a uniform description. 

These are equivalent [38] to 

[F(.N'), F(A/)]  c F(.N'). (15) 
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The above analogy leads to the following programme of  Trautman. Find all optical 

geometric counterparts of  known theorems and constructions in Hermitian geometry. 

The same programme can be also applied in the opposite direction. We have only par- 

tial knowledge in this matter. We know, in particular, that O+ on 79 is analogous to the 

At iyah-Hi tch in-S inger  construction [1], of  a natural almost Hermitian structure on the 

space .4 of  all almost Hermitian structures over four-dimensional Euclidean manifold. 2 A 

fact that well known to relativists Goldberg-Sachs  theorem [8] has a Herrnitian counterpart 

[27] is somewhat surprising to us. 3 This result states necessary and sufficient conditions for 

local existence of  integrable Hermitian structure on four-dimensional Euclidean manifolds 

satisfying the Einstein equations (9). Such structures can exist iff the metric of  the manifold 

is algebraically special, in the sense of  the Euclidean analog of  Petrov classification (see 

also [20]). 

More facts concerning the analogy between optical and Hermitian structures are given 

below. In the following list .A4 is an oriented, Lorentzian or Euclidean, respectively, four- 

dimensional manifold. 

Op t i ca l  g e o m e t r y  - H e r m i t i a n  g e o m e t r y  

(1) Null vector field k on M - almost Hermitian structure J on A//. 

(2) Two spheres of  null directions outgoing from or ingoing to x c M - two spheres of  

almost Hermitian structures at x E .A4. 

(3) Shear-free and geodesic property for k - integrability for J .  

(4)  79 - A .  

(5) O+ - standard almost Hermitian structure `7+ on .4. 

(6) O _  - nonstandard almost Hermitian structure `7_ on .4. 

(7) Theorem 4.1 - theorem of  Ref. [ 1 ] on integrability of  J + .  

(8) Principal null directions of  Cartan [4] - sections on which integrability conditions for 

`7+ vanish. 

Kerr theorem - which Hermitian structures live in self-dual .A4. 

Goldberg-Sachs  theorem [8] - Przanowski-Broda theorem [27]. 

Degenerate points of  Rovel l i -Smol in  loop variables [7] - Kahlerian 4-manifolds. 

Integrability of  CR-structure associated with congruence of  twisting shear-free and 

null geodesics on Einstein .A4 [ 17] - existence of  holomorphic vector field on Einstein 

algebraically special conformally nonflat and not Kahlerian .A4 [5], [26]. 4 

? - construction of  instantons [ 1 ]. 

? -  Salamon's  construction [31] of  harmonic maps using ,7_. 

Fefferman metric [6] for three-dimensional CR-structure - some self-dual class of  

four-dimensional Euclidean metrics (?). 

One can continue this list. The following remarks are in order. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

2 In Ref. [1] space ,,4 is called twistor bundle. It is the reason why we also assign this name to 79. Relativist 
twistorians prefer a name 'spin bundle' for 79. 

3 For example, up to our knowledge it is not noted in Besse's book [2]. 
4 1 thank Lewandowski for bringing this to my attention. See also l 16]. 



(A) 

(B) 

(c) 
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According to Lewandowski [ 15 ] our formulation (8) of the traceless part of the Einstein 

equations in terms of distinguished forms on T' seems to have no Euclidean counterpart. 

Kobak [ 10] asks as to whether one can use O_ to find an analog of Salamon's harmonic 

map construction. In Salamon's paper [31] a crucial role was played by the almost 

Hermitian structure J _  on A. This suggests that also O_ can be useful for solving 

certain nonlinear equations on Lorentzian 4-manifolds. 

For any nondgenerate three-dimensional CR-structure Q we can define the Fefferman 

conformal class of Lorentzian metrics on the fiber bundle over Q. This class of metrics 

is always of Petrov type N [13]. All Fefferman metrics can be also defined as one of the 

two subclasses of four-dimensional Lorentzian metrics that admit nonzero solution to 

the twistor equation 5 [ 14], Euclidean metrics that admit solutions to the twistor equa- 

tion must be self-dual [15]. Does there exist a Euclidean analog of the Fefferman [6] 

(or, more likely, of the Bums, Diederich and Schnider [3]) construction of Fefferman 

metrics? If yes, does it provide us with a new class of self-dual Hermitian metrics? 
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